Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS.
نویسندگان
چکیده
Cysteine 150 of retinal degeneration slow protein (RDS) mediates the intermolecular disulfide bonding necessary for large RDS complex assembly and morphogenesis of the rim region of photoreceptor outer segments. Previously, we showed that cones have a different requirement for RDS than rods, but the nature of that difference was unclear. Here, we express oligomerization-incompetent RDS (C150S-RDS) in the cone-dominant nrl(-/-) mouse. Expression of C150S-RDS leads to dominant functional abnormalities, ultrastructural changes, biochemical anomalies and protein mislocalization in cones. These data suggest that RDS complexes in cones are more susceptible to disruption than those in rods, possibly due to structural or microenvironmental differences in the two cell types. Furthermore, our results suggest that RDS intermolecular disulfide bonding may be part of RDS inner-segment assembly in cones but not in rods. These data highlight significant differences in assembly, trafficking and function of RDS in rods versus cones.
منابع مشابه
Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones.
It is commonly assumed that the ultrastructural organization of the rim region of outer segment (OS) discs in rods and lamellae in cones requires functional retinal degeneration slow/rod outer segment membrane protein 1 (Rds/Rom-1) complexes. Cysteine-150 (C150) in Rds has been implicated in intermolecular disulfide bonding essential for functional Rds complexes. Transgenic mice containing the ...
متن کاملRetinal Degeneration Slow (RDS) Glycosylation Plays a Role in Cone Function and in the Regulation of RDS·ROM-1 Protein Complex Formation.
The photoreceptor-specific glycoprotein retinal degeneration slow (RDS, also called PRPH2) is necessary for the formation of rod and cone outer segments. Mutations in RDS cause rod and cone-dominant retinal disease, and it is well established that both cell types have different requirements for RDS. However, the molecular mechanisms for this difference remain unclear. Although RDS glycosylation...
متن کاملRim formation is not a prerequisite for distribution of cone photoreceptor outer segment proteins.
Retinal degeneration slow (RDS/PRPH2) is critical for the formation of the disc/lamella rim in photoreceptor outer segments (OSs), but plays a different role in rods vs. cones. Without RDS, rods fail to form OSs, however, cones lacking RDS (in the rds(-/-)/Nrl(-/-)) exhibit balloon-like OSs devoid of lamellae. We show that distribution of most proteins in the lamella and PM domains is preserved...
متن کاملRetention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors
It is commonly assumed that photoreceptor (PR) outer segment (OS) morphogenesis is reliant upon the presence of peripherin/rds, hereafter termed Rds. In this study, we demonstrate a differential requirement of Rds during rod and cone OS morphogenesis. In the absence of this PR-specific protein, rods do not form OSs and enter apoptosis, whereas cone PRs develop atypical OSs and are viable. Such ...
متن کاملInsights into the mechanisms of macular degeneration associated with the R172W mutation in RDS.
Mutations in the photoreceptor tetraspanin gene peripherin-2/retinal degeneration slow (PRPH2/RDS) cause both rod- and cone-dominant diseases. While rod-dominant diseases, such as autosomal dominant retinitis pigmentosa, are thought to arise due to haploinsufficiency caused by loss-of-function mutations, the mechanisms underlying PRPH2-associated cone-dominant diseases are unclear. Here we took...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 19 24 شماره
صفحات -
تاریخ انتشار 2010